Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Prove, using the $N-\varepsilon$ equivalent definition of limit, that

$$
\lim _{n \rightarrow \infty} \frac{3 n+2}{6 n+1}=\frac{1}{2}
$$

2. Prove, using the $N-\varepsilon$ equivalent definition of limit, that

$$
\lim _{n \rightarrow \infty} \frac{n+2}{7 n+5}=\frac{1}{7} .
$$

3. Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms. Let $c>0$ be a real number such that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c .
$$

Prove that both series converge or both series diverge.
4. Suppose that $\sum_{n=1}^{\infty} a_{n}$ converges absolutely and $\left\{b_{n}\right\}$ is a bounded sequence of real numbers. Prove that

$$
\sum_{n=1}^{\infty} a_{n} b_{n}
$$

converges absolutely.
5. Let A and B be two compact subsets of \mathbb{R}. Prove that $A \cup B$ is compact.
6. Let A and B be two compact subsets of \mathbb{R}. Prove that $A \cap B$ is compact.
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function and $f(x) \in \mathbb{Q}$ for all $x \in \mathbb{R}$. Prove that f is a constant function.
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Prove that $f^{-1}(A)$ is closed for every closed set $A \subseteq \mathbb{R}$. Recall:

$$
f^{-1}(A)=\{x \in \mathbb{R}: f(x) \in A\}
$$

9. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ via

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Prove that f is continuous on all of \mathbb{R}.

